首页> 外文OA文献 >A robust Bayesian approach to modeling epistemic uncertainty in common-cause failure models
【2h】

A robust Bayesian approach to modeling epistemic uncertainty in common-cause failure models

机译:可靠的贝叶斯方法对常见原因故障模型中的认知不确定性进行建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In a standard Bayesian approach to the alpha-factor model for common-cause failure, a precise Dirichlet prior distribution models epistemic uncertainty in the alpha-factors. This Dirichlet prior is then updated with observed data to obtain a posterior distribution, which forms the basis for further inferences.\u3cbr/\u3e\u3cbr/\u3eIn this paper, we adapt the imprecise Dirichlet model of Walley to represent epistemic uncertainty in the alpha-factors. In this approach, epistemic uncertainty is expressed more cautiously via lower and upper expectations for each alpha-factor, along with a learning parameter which determines how quickly the model learns from observed data. For this application, we focus on elicitation of the learning parameter, and find that values in the range of 1 to 10 seem reasonable. The approach is compared with Kelly and Atwood's minimally informative Dirichlet prior for the alpha-factor model, which incorporated precise mean values for the alpha-factors, but which was otherwise quite diffuse.\u3cbr/\u3e\u3cbr/\u3eNext, we explore the use of a set of Gamma priors to model epistemic uncertainty in the marginal failure rate, expressed via a lower and upper expectation for this rate, again along with a learning parameter. As zero counts are generally less of an issue here, we find that the choice of this learning parameter is less crucial.\u3cbr/\u3e\u3cbr/\u3eFinally, we demonstrate how both epistemic uncertainty models can be combined to arrive at lower and upper expectations for all common-cause failure rates. Thereby, we effectively provide a full sensitivity analysis of common-cause failure rates, properly reflecting epistemic uncertainty of the analyst on all levels of the common-cause failure model.
机译:在针对常见原因失败的alpha因子模型的标准贝叶斯方法中,精确的Dirichlet先验分布对alpha因子中的认知不确定性进行建模。然后用观察到的数据更新该Dirichlet先验,以获得后验分布,从而为进一步的推断奠定了基础。\ u3cbr / \ u3e \ u3cbr / \ u3e在本文中,我们采用了不精确的Walley Dirichlet模型来表示认知不确定性。 alpha因子。在这种方法中,认知不确定性通过对每个alpha因子的上下期望更加谨慎地表达,并且通过学习参数确定模型从观察到的数据中学习的速度。对于此应用程序,我们着重于启发学习参数,并发现1到10范围内的值似乎是合理的。将该方法与Kelly和Atwood的信息量最少的Dirichlet先于alpha因子模型进行了比较,该模型结合了alpha因子的精确平均值,但在其他方面却相当分散。\ u3cbr / \ u3e \ u3cbr / \ u3e下一步,我们探索再次使用一组Gamma先验模型来模拟边缘失败率的认知不确定性,再通过对该参数的较高和较低的期望值以及学习参数来表示。由于这里零计数通常不再是一个问题,因此我们发现选择此学习参数的重要性较小。\ u3cbr / \ u3e \ u3cbr / \ u3e最后,我们演示了如何结合两个认知不确定性模型来得出较低的和对所有常见原因故障率的较高期望。因此,我们有效地提供了常见原因失败率的完整敏感性分析,可以正确反映出分析师在所有级别的常见原因失败模型上的认知不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号